Perverse Schobers and 2-Categorical 3d Mirror Symmetry

Justin Hilburn

22-Mar-2022, 15:00-16:00 (4 years ago)

Abstract: 3d mirror symmetry predicts an equivalence between 2-categories associated to dual holomorphic symplectic stacks. The first 2-category is of an algebro-geometric flavor and has constructions due to Kapustin/Rozansky/Saulina and Arinkin. The second category depends on symplectic topology and has a conjectural description in terms of the 3d generalized Seiberg-Witten equations (also known as the gauged Fueter equations).

In this talk I will describe joint work with Ben Gammage and Aaron Mazel-Gee proving a variant of 3d mirror symmetry for Gale dual toric cotangent stacks. In particular, we define a combinatorial model for the symplectic 2-category using equivariant perverse schobers. If time permits I will explain work in progress extending our equivalence from toric cotangent stacks to hypertoric varieties. This will provide a categorification of previous results on Koszul duality for hypertoric categories O.

algebraic geometrydifferential geometrygeometric topologysymplectic geometry

Audience: researchers in the topic


Free Mathematics Seminar

Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.

The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.

Organizers: Jonny Evans*, Ailsa Keating, Yanki Lekili*
*contact for this listing

Export talk to